Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Authors
Abstract:
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laboratory with the capability for high resolution three-dimensional (3D) radiation dosimetry using gel dosimeters. The OCT system was compared to magnetic resonance imaging (MRI) as a standard system to investigate its accuracy. Additionally, a number of parameters were checked for assessing the performance of the system. Results: Developing an advanced OCT system, the calibration curve was drawn for OCT and MRI and the received dose values were compared. The amounts of dose obtained from OCT and MRI were 1.98 and 2 Gy respectively with a relative difference of 2%. Conclusion: The quality of treatment can be improved using OCT system in radiotherapy dosimetry.
similar resources
development and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولParallel optical coherence tomography system.
We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15 microm) SMFs in the sample arm with 15 microm center spacing between fibers. The size of the array determines the size of the transverse imag...
full textClinical Applications of Optical Coherence Tomography in Ophthalmology
Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases. Furtherm...
full textExperimental Visualization of Labyrinthine Structure with Optical Coherence Tomography
Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...
full textOptical Coherence Tomography: Development and Applications
In early 90 ́s Huang et al., applied the principles of low coherence interferometry to perform high resolution tomographic images of biological tissues. The technique became known as Optical Coherence Tomography (OCT) and opened new horizons in several areas of knowledge, e.g., ophthalmology (Hee, et al., 1995)(Meirelles, et al., 2005) and dermatology. In such areas other tomographic techniques ...
full textSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
full textMy Resources
Journal title
volume 15 issue 4
pages 243- 250
publication date 2018-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023